THE POLAR COORDINATE SYSTEM

Review of the Rectangular (Cartesian) Coordinate System

A rectangular coordinate system usually consists of two perpendicular lines, one horizontal and one vertical. For this discussion, the horizontal line will be called the *X-axis* and the vertical line will be called the *Y-axis*. The point of intersection of these two lines is called the *origin*. The points of the X-axis to the right of the origin represent positive numbers and the points of the X-axis to the left of the origin represent negative numbers. Similarly, the points of the Y-axis above the origin represent positive numbers and the points of the Y-axis below the origin represent negative numbers.

Every point in the rectangular plane is described by an ordered pair of real numbers, (x,y). The x and y are called the coordinates of the point. The first coordinate describes the number of units the point is to the right or left of the Y-axis and the second coordinate describes the number of units the point is above or below the X-axis. To illustrate, suppose the coordinates of point P are (-3, 2). The graph of point P is shown below.

Note that every point can be described by only one ordered pair of real numbers. For example, the first coordinate of P must be -3 (although it might be written in another form, such as -6/2) and the second coordinate must be 2.

Introduction to the Polar Coordinate System

A polar coordinate system consists of a fixed point (called the **pole** or origin) and a ray from the origin (called the **polar axis**). The polar axis is usually horizontal and directed toward the right.

Every point in the polar coordinate system is described by an ordered pair of real numbers, (r, θ) . The first coordinate describes the point's distance from the pole and the second coordinate describes the angle formed with the polar axis.

To illustrate, suppose Q has coordinates (2, π /3). Point Q must be two units from the origin and Q must be on the ray which forms an angle of π /3 with the polar axis. (Note that counterclockwise rotations are considered positive and clockwise rotations are considered negative.) There is only one possible location of Q, as shown below.

Point Q could be also be described by different pairs of coordinates. For example, consider the coordinates $(2, 7\pi/3)$. Since $7\pi/3 = \pi/3 + 2\pi$, it follows that $(2, 7\pi/3)$ and $(2, \pi/3)$ are two different names for point Q. It is also possible to describe point Q using negative angles such as $(2, -5\pi/3)$ and $(2, -11\pi/3)$.

Real number r can be a negative number. For example, consider the polar coordinates (-2, $4\pi/3$). It is often easier to graph in the polar system by starting with the second number, and so begin with the ray which forms the angle $4\pi/3$ with the polar axis. This ray is drawn below with a solid line.

All r values on the this solid ray are considered positive. Negative r values are located on the *backward extension* of the ray, as shown by the dotted line. Therefore (-2, $4\pi/3$) is another name for point Q(2, $\pi/3$).

To summarize, we have discovered that point Q can be named by either of the following forms, where k represents any integer.

$$(2, \pi/3 + k 2\pi)$$

 $(-2, 4\pi/3 + k 2\pi)$ Note that this could also be expressed as $(-2, \pi/3 + (2k + 1)\pi)$

This could be generalized for every point in the polar coordinate system. Any point $P(r, \theta)$ can be expressed in either of the following forms, where k represents any integer.

$$(r, \theta + k 2\pi)$$

$$(-r, \theta + (2k + 1)\pi)$$

Problems

 Give three different names for each of the points graphed on the right.

2. Locate each of the following points on the polar coordinate system given below.

$$P(3, \pi/2)$$

$$T(3, -2\pi/3)$$

$$U(5, 11\pi)$$

$$R(4, -\pi/6)$$

$$V(5, -3\pi/4)$$

$$S(0, \pi/8)$$

$$W(-4, 25\pi/3)$$

7

(
$$0/\pi\Gamma$$
-, 2Γ , 2 -) ($0/\pi$ -, 2Γ -2) ($0/\pi$ 2, 2Γ -2-) :**3** trio**9**

Point D:
$$(3, 3\pi/2)$$
 $(-3, \pi/2)$ (3, $7\pi/2$)

Point C:
$$(1, 2\pi/3)$$
 $(-1, -\pi/3)$ $(1, 8\pi/3)$

Point B:
$$(5, \pi/4)$$
 $(4/\pi \xi, \xi-)$ $(4/\pi \xi, \xi)$:8 inio9

$$(\pi, \xi) (\pi, \xi) (0, \xi)$$
 :A finio