Using and Solving Formulas

Worked Examples

If you put P dollars into an interest-bearing account and leave it there, the amount of money A in the account after t years is given by the formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Here r is the annual interest rate, expressed as a decimal, and n is the number of compounding periods per year.

If you put $\$ 1000$ into an account that earns 1.5% interest per year, compounded monthly, then how much money is in the account after 4 years?

If you put P dollars into an interest-bearing account and leave it there, the amount of money A in the account after t years is given by the formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Here r is the annual interest rate, expressed as a decimal, and n is the number of compounding periods per year.

If you put $\$ 1000$ into an account that earns 1.5% interest per year, compounded monthly, then how much money is in the account after 4 years?

Reading the problem carefully tells us what all the letters stand for. A is the amount at the end, which is what we want to know. P is the amount we deposit (P stands for principal) - in this example, it's $\$ 1000 . r$ is the interest rate, expressed as a decimal; in this example, $r=0.015 . n$ is the number of compounding periods per year - this is compounded monthly, so $n=12$. t is the number of years, which we're told is 4 .

If you put P dollars into an interest-bearing account and leave it there, the amount of money A in the account after t years is given by the formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Here r is the annual interest rate, expressed as a decimal, and n is the number of compounding periods per year.

If you put $\$ 1000$ into an account that earns 1.5% interest per year, compounded monthly, then how much money is in the account after 4 years?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=1000\left(1+\frac{.015}{12}\right)^{12 \cdot 4} \cong 1061.80 .
\end{aligned}
$$

There will be $\$ 1,061.80$ in the account at the end of 4 years.

If you put P dollars into an interest-bearing account and leave it there, the amount of money A in the account after t years is given by the formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Here r is the annual interest rate, expressed as a decimal, and n is the number of compounding periods per year.

If you put $\$ 1000$ into an account that earns 1.5% interest per year, compounded monthly, then how much money is in the account after 4 years?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& A=1000\left(1+\frac{.015}{12}\right)^{12.4} \cong 1061.80 .
\end{aligned}
$$

You can compute this step by step, if you want to. But don't round your answers until the very end of the problem. If you have an algebraic calculator (like a TI-84), you can type this in directly - just make sure you use parentheses to preserve the order of operations.

If you put P dollars into an interest-bearing account and leave it there, the amount of money A in the account after t years is given by the formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Here r is the annual interest rate, expressed as a decimal, and n is the number of compounding periods per year.

Now suppose we want to put our money in an account and have $\$ 5000$ by the end of three years. Depending on the interest rate, we will need different amounts to start. This is a good time to solve this formula for P, our starting amount:

If you put P dollars into an interest-bearing account and leave it there, the amount of money A in the account after t years is given by the formula

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Here r is the annual interest rate, expressed as a decimal, and n is the number of compounding periods per year.

Solve this formula for P.

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \\
& P=\frac{A}{\left(1+\frac{r}{n}\right)^{n t}}
\end{aligned}
$$

The new formula expresses the same relationship among principal, amount in the account, interest rate, compounding periods and length of time - but now it reflects our new focus on "how much should I start with?"

Heron's formula gives the area of any triangle in terms of its side lengths (so you don't have to know its height). The formula is

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where a, b, and c are the three side lengths and s is the
"semiperimeter," or $s=\frac{1}{2}(a+b+c)$.

Find the area of a triangle with side lengths $3 \mathrm{~cm}, 8 \mathrm{~cm}$, and 9 cm .

Heron's formula gives the area of any triangle in terms of its side lengths (so you don't have to know its height). The formula is

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where a, b, and c are the three side lengths and s is the
"semiperimeter," or $s=\frac{1}{2}(a+b+c)$.

Find the area of a triangle with side lengths $3 \mathrm{~cm}, 8 \mathrm{~cm}$, and 9 cm .

Note that the formula has the right units for area. First we multiply 4 lengths, so that gives us length units to the 4th power. Then we take the square root, so we get square units for the area.

Heron's formula gives the area of any triangle in terms of its side lengths (so you don't have to know its height). The formula is

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where a, b, and c are the three side lengths and s is the "semiperimeter," or $s=\frac{1}{2}(a+b+c)$.

Find the area of a triangle with side lengths $3 \mathrm{~cm}, 8 \mathrm{~cm}$, and 9 cm .
First, let's figure out $s=\frac{1}{2}(a+b+c)=\frac{1}{2}(3+8+9)=10 \mathrm{~cm}$.

Heron's formula gives the area of any triangle in terms of its side lengths (so you don't have to know its height). The formula is

$$
A=\sqrt{s(s-a)(s-b)(s-c)}
$$

where a, b, and c are the three side lengths and s is the "semiperimeter," or $s=\frac{1}{2}(a+b+c)$.

Find the area of a triangle with side lengths $3 \mathrm{~cm}, 8 \mathrm{~cm}$, and 9 cm .
First, let's figure out $s=\frac{1}{2}(a+b+c)=\frac{1}{2}(3+8+9)=10 \mathrm{~cm}$.
Then we can find $A=\sqrt{s(s-a)(s-b)(s-c)}$

$$
=\sqrt{10(10-3)(10-8)(10-9)}=\sqrt{140} \cong 11.83 \mathrm{~cm}^{2} .
$$

The area of this triangle is about 11.83 square centimeters.

