Factoring

Worked Examples

Factor completely: $y^{5}-6 y^{4}+9 y^{3}$

Factor completely: $y^{5}-6 y^{4}+9 y^{3}$

First, factor out the common factors:

$$
y^{5}-6 y^{4}+9 y^{3}=y^{3}\left(y^{2}-6 y+9\right)
$$

Factor completely: $y^{5}-6 y^{4}+9 y^{3}$

First, factor out the common factors:

$$
y^{5}-6 y^{4}+9 y^{3}=y^{3}\left(y^{2}-6 y+9\right)
$$

Now you should recognize what remains as a perfect square:

$$
y^{5}-6 y^{4}+9 y^{3}=y^{3}\left(y^{2}-6 y+9\right)=y^{3}(y-3)^{2}
$$

Factor completely: $8 x^{2}-11 x-7 \frac{1}{2}$

Factor completely: $8 x^{2}-11 x-7 \frac{1}{2}$

It is possible to factor this with the AC method. I'm looking for two numbers whose product is -60 and whose sum is -11 .

Factor completely: $8 x^{2}-11 x-7 \frac{1}{2}$

It is possible to factor this with the AC method. I'm looking for two numbers whose product is -60 and whose sum is $-11 ;-15$ and 4 work. So

$$
\begin{aligned}
& 8 x^{2}-11 x-7 \frac{1}{2}=8 x^{2}-15 x+4 x-7 \frac{1}{2}= \\
& x(8 x-15)+\frac{1}{2}(8 x-15)=\left(x+\frac{1}{2}\right) \cdot(8 x-15)
\end{aligned}
$$

Factor completely: $\quad 8 x^{2}-11 x-7 \frac{1}{2}$

It is possible to factor this with the AC method. I'm looking for two numbers whose product is -60 and whose sum is $-11 ;-15$ and 4 work. So

$$
\begin{aligned}
& 8 x^{2}-11 x-7 \frac{1}{2}=8 x^{2}-15 x+4 x-7 \frac{1}{2}= \\
& x(8 x-15)+\frac{1}{2}(8 x-15)=\left(x+\frac{1}{2}\right) \cdot(8 x-15)
\end{aligned}
$$

But what if you can't find those two numbers? Or what if the factorization by grouping is too tricky?

Factor completely: $\quad 8 x^{2}-11 x-7 \frac{1}{2}$

But what if you can't find those two numbers? Or what if the factorization by grouping is too tricky? You can use the quadratic formula to find the same factors:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-(-11) \pm \sqrt{(-11)^{2}-4(8)(-7.5)}}{2(8)}=\frac{11 \pm \sqrt{361}}{16}=\frac{11 \pm 19}{16} .
$$

The two roots are $x=\frac{15}{8}$ and $x=-\frac{1}{2}$. So this quadratic has $\left(x-\frac{15}{8}\right)$
and $\left(x+\frac{1}{2}\right)$ as factors. Multiplying by 8 so the leading coefficient
is right, we get: $8 x^{2}-11 x-7 \frac{1}{2}=8\left(x-\frac{15}{8}\right)\left(x+\frac{1}{2}\right)$.
(You should confirm that this is the same answer that we got from the AC method.)

Factor completely: $y^{3}-11 y^{2} x+24 y x^{2}$

Factor completely: $y^{3}-11 y^{2} x+24 y x^{2}$

First, factor out the common factor of y :

$$
y^{3}-11 y^{2} x+24 y x^{2}=y\left(y^{2}-11 y x+24 x^{2}\right) .
$$

Now don't panic because there are still two variables - the remaining piece has that same quadratic pattern.

Factor completely: $y^{3}-11 y^{2} x+24 y x^{2}$

First, factor out the common factor of y :

$$
y^{3}-11 y^{2} x+24 y x^{2}=y\left(y^{2}-11 y x+24 x^{2}\right) .
$$

Now don't panic just because there are still two variables - the remaining piece has that familiar quadratic pattern.

We can factor by guess and check. We need two numbers that add to -11 and multiply to make 24. -8 and -3 work. So

$$
y^{3}-11 y^{2} x+24 y x^{2}=y\left(y^{2}-11 y x+24 x^{2}\right)=y(y-3 x)(y-8 x) .
$$

Factor completely: $a^{4}-5 a^{2}-36$

Factor completely: $\quad a^{4}-5 a^{2}-36$

Although this isn't a quadratic, it has that pattern - if you think of a^{2} as your variable. The "quadratic" factors by guess and check (two numbers that add to -5 and multiply to make -36):

$$
a^{4}-5 a^{2}-36=\left(a^{2}-9\right)\left(a^{2}+4\right)
$$

Factor completely: $\quad a^{4}-5 a^{2}-36$

Although this isn't a quadratic, it has that pattern - if you think of a^{2} as your variable. The "quadratic" factors by guess and check (two numbers that add to -5 and multiply to make -36):

$$
a^{4}-5 a^{2}-36=\left(a^{2}-9\right)\left(a^{2}+4\right)
$$

Now the factors really are quadratics that we recognize. The first is a difference of squares, and the second is a sum of squares (which is already completely factored).

$$
a^{4}-5 a^{2}-36=\left(a^{2}-9\right)\left(a^{2}+4\right)=(a+3)(a-3)\left(a^{2}+4\right)
$$

