Exponents

Worked Examples

Write using all positive exponents: $\sqrt[4]{x^{2} y^{6}}$
Assume all variables represent positive real numbers

Write using all positive exponents: $\sqrt[4]{x^{2} y^{6}}$
 Assume all variables represent positive real numbers

You will need to remember the rules of exponents. How do you write a root as an exponent? What happens to a product when you raise it to a power? What happens to powers when you raise them to powers?

Write using all positive exponents: $\sqrt[4]{x^{2} y^{6}}$
Assume all variables represent positive real numbers

You will need to remember the rules of exponents. How do you write a root as an exponent? What happens to a product when you raise it to a power? What happens to powers when you raise them to powers?

$$
\sqrt[4]{x^{2} y^{6}}=\left(x^{2} y^{6}\right)^{1 / 4}=\left(x^{2}\right)^{1 / 4}\left(y^{6}\right)^{1 / 4}=x^{1 / 2} y^{3 / 2}
$$

Write using all positive exponents: $\quad \frac{a^{10} b^{-4}}{a^{2} b^{-5}}$
Assume all variables represent positive real numbers

Write using all positive exponents: $\quad \frac{a^{10} b^{-4}}{a^{2} b^{-5}}$
 Assume all variables represent positive real numbers

Remember the rules of exponents. What happens to the exponents when you divide two powers?

Write using all positive exponents: $\quad \frac{a^{10} b^{-4}}{a^{2} b^{-5}}$
Assume all variables represent positive real numbers

Remember the rules of exponents. What happens to the exponents when you divide two powers?

$$
\frac{a^{10} b^{-4}}{a^{2} b^{-5}}=\left(\frac{a^{10}}{a^{2}}\right)\left(\frac{b^{-4}}{b^{-5}}\right)=a^{8} b
$$

Write using all positive exponents: $\quad \frac{3}{w^{-4}}$
Assume all variables represent positive real numbers

Write using all positive exponents: $\quad \frac{3}{w^{-4}}$
Assume all variables represent positive real numbers

Remember that negative exponents mean reciprocals. And be careful - the exponent applies only to what it touches.

Write using all positive exponents: $\quad \frac{3}{w^{-4}}$
Assume all variables represent positive real numbers

Remember that negative exponents mean reciprocals. And be careful - the exponent applies only to what it touches.

$$
\frac{3}{w^{-4}}=3 \cdot \frac{1}{w^{-4}}=3 w^{4}
$$

Use your calculator and exponents to compute: $\sqrt[7]{356}$

Use your calculator and exponents to compute: $\sqrt[7]{356}$

Most calculators don't have a $7^{\text {th }}$ root button. But even if yours does, use exponents instead. How do you write a root as an exponent?

Use your calculator and exponents to compute: $\sqrt[7]{356}$

Most calculators don't have a $7^{\text {th }}$ root button. But even if yours does, use exponents instead. How do you write a root as an exponent?

$$
\sqrt[7]{356}=(356)^{1 / 7} \cong 2.315
$$

Be sure to put the $1 / 7$ inside parentheses when you put this into your calculator.

On a TI-84 type calculator, you would type: $356^{\wedge}(1 / 7)$

