Completing the Square

Worked Examples

Complete the square: $x^{2}+9 x+5$

Complete the square: $x^{2}+9 x+5$

The leading coefficient is already 1 . Taking half of 9 gives us $9 / 2$, so the square
we want is $\left(x+\frac{9}{2}\right)^{2}=x^{2}+9 x+\frac{81}{4}$.
Now we add and subtract 81/4, and regroup:

$$
\begin{aligned}
x^{2}+9 x+5 & =x^{2}+9 x+\left(\frac{81}{4}-\frac{81}{4}\right)+5=\left(x^{2}+9 x+\frac{81}{4}\right)-\frac{81}{4}+5 \\
& =\left(x+\frac{9}{2}\right)^{2}-\frac{61}{4}
\end{aligned}
$$

Complete the square: $4 x^{2}-16 x+14$

Complete the square: $4 x^{2-16 x+14}$

First, let's factor out the leading coefficient - we'll include the 4 at the end.

$$
4 x^{2}-16 x+14=4\left(x^{2}-4 x+\frac{7}{2}\right)
$$

Now we complete the square as before with $x^{2}-4 x+\frac{7}{2}$.

Complete the square: $4 x^{2-16 x+14}$

Now we complete the square as before with $x^{2}-4 x+\frac{7}{2}$.
One half of -4 is -2 , so the square we want is $(x-2)^{2}=x^{2}-4 x+4$.

Add and subtract the 4 and regroup:

$$
\begin{aligned}
x^{2}-4 x+\frac{7}{2} & =x^{2}-4 x+(4-4)+\frac{7}{2}=\left(x^{2}-4 x+4\right)-4+\frac{7}{2} \\
& =(x-2)^{2}-\frac{1}{2}
\end{aligned}
$$

Finally, we bring back the 4 we factored out at the beginning:

$$
4 x^{2}-16 x+14=4\left((x-2)^{2}-\frac{1}{2}\right)=4(x-2)^{2}-2
$$

